Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level.

نویسندگان

  • Amani A Hariri
  • Graham D Hamblin
  • Yasser Gidi
  • Hanadi F Sleiman
  • Gonzalo Cosa
چکیده

DNA nanotubes offer a high aspect ratio and rigidity, attractive attributes for the controlled assembly of hierarchically complex linear arrays. It is highly desirable to control the positioning of rungs along the backbone of the nanotubes, minimize the polydispersity in their manufacture and reduce the building costs. We report here a solid-phase synthesis methodology in which, through a cyclic scheme starting from a 'foundation rung' specifically bound to the surface, distinct rungs can be incorporated in a predetermined manner. Each rung is orthogonally addressable. Using fluorescently tagged rungs, single-molecule fluorescence studies demonstrated the robustness and structural fidelity of the constructs and confirmed the incorporation of the rungs in quantitative yield (>95%) at each step of the cycle. Prototype structures that consisted of up to 20 repeat units, about 450 nm in contour length, were constructed. Combined, the solid-phase synthesis strategy described and its visualization through single-molecule spectroscopy show good promise for the production of custom-made DNA nanotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Molecular Selenium ‎Adsorption to the Outer Surface of Single ‎Wall Carbon Nanotubes

   In this study the adsorption of selenium molecule (Se2) on the outer surface of zigzag (5,0), (8,0) and (10,0) carbon nanotubes has been investigated. We examined number adsorbed orientations as well as different adsorption sites on nanotubes. The adsorption energies, equilibrium distances, energy differences between the highest occupied molecular orbital (HOMO) and lowest uno...

متن کامل

Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

The effective parameters of (5, 0) and (5, 5) single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT) at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and par...

متن کامل

Investigation of Solvent Effects on Interaction of Single-Strand DNA with Open-End of Single Walled Carbon Nanotubes Using QM and MM methods

The interaction of biomolecules with carbon nanotubes (CNTs) has generated a great deal ofinterest in the past few years. The interaction between B-form single-strand DNA (ssDNA) andsingle-walled carbon nanotubes (SWCNTs) is a subject of intense current interest; however thereare a relatively small number of papers in the literature dealing with interaction of DNA andSWCNTs. In this work we inv...

متن کامل

بررسی کارایی تکنیک تکثیر دایره‌ای چرخان برای تشخیص سریع قارچ کلادوفیالوفورا کاریونی و کلادوفیالوفورا یگرزی

Background and Objective: Epidemiological studies indicate that not only the incidence of fungal infections is dramatically on the rise, especially in the immunocompromised hosts, but also the sensitivity of etiological agents to antifungal drugs shows a remarkable reduction. Therefore, early detection at the species level is critically important for proper clinical management. Because standard...

متن کامل

Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study

Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2015